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The well-known methods of Coats-Redfern, Freeman-Carroll, and Achar et al. 
are modified to include the temperature dependence of the pre-exponential factor 
in the Arrhenius expression for the rate constant. These modifications serve to cast 
these methods into their most general Arrhenius form. Suggestions are given regarding 
various numerical methods for extracting the temperature dependence of the pre- 
exponential factor from thermogravimetric and derivative thermogravimetric data. 

There have been numerous proposals which relate thermogravimetric (TG) 
and derivative thermogravimetric (DTG) data to kinetic parameters of  solid- 
state decompositions [1 -7 ] .  In these proposals, it is assumed that the pre-ex- 
ponential factor of  the Arrhenius equation is temperature independent. It has been 
shown experimentally, however, for a number of gas and solution phase reactions 
that the extended form of  the Arrhenius equation, Ink = lnZ + (C/R)lnT - E/RT, 
is necessary to explain the kinetic data [8]. The basis of  this equation in statistical 
mechanics is well known [9]. Even though TG and D TG  data often span wide 
temperature ranges, there has yet been no quantitative test of  the temperature 
dependence of  the pre-exponential factor. In some cases where the activation 
energy is small, this temperature dependence may be observable. We propose 
extensions of  the methods of  Freeman and Carroll [1], Coats and Redfern [2], 
and Achar et al. [3] to include this effect. These extensions serve to put these methods 
into the most general Arrhenius form. 

Theory 

The disappearance of  the reactant in a solid-state decomposition may be rep- 
resented by 

d~/dt = k(1 - ~)n (1) 
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where d e / d t  is the decomposition rate, e is the fraction of  the original material 
reacted, k is the rate constant, and n is the order of  the reaction. 

To develop our generalized approaches, we write the Arrhenius equation as 

k = Z T  (cm) e x p ( - E / R T )  (2) 

where Z = constant, T = temperature, C = constant, R = gas constant, and 
E = activation energy. 

As usual, temperature and time are related by 

a = d T / d t  (3) 

where a is the linear heating rate. 

M o d i f i c a t i o n  o f  the  C o a t s  a n d  R e d f e r n  m e t h o d  

The method devised by Coats and Redfern has been frequently employed 
to determine kinetic parameters. This is an integral method; hence, D T G  data 
are unnecessary. In this method, one generally assumes that the reaction has an 
order of 0, 1/2, 2/3, or 1. The most nearly linear Coats and Redfern plot is then 
chosen to correspond to the correct values of n, E, and Z. 

By combining Eqs (1), (2), and (3) and integrating, we immediately see that 

f ,1s _z t r'bexp(-e/Rr')dr' (4) 
(1 - ~')" a . 

0 0 

where b = CIR .  

When n r 1, the left-hand side I(~) of  Eq. (4) is simply 

1 - (1 - e ) l - n  ( 5 a )  
l(cO = 1 - n 

However, if n = 1, we have 

I(c 0 = In (1 - e). (5b) 

E 
With the substitution x = ~ - , ,  the right-hand side J ( T )  of Eq. (4) may be written 

a s  

oo z   b+lf J ( T )  = - -  x -  (b + 2) exp(-- x) dx. 
a 

E[RT 

(6) 

For particular values of b, the integral in Eq. (6) can be related to certain special 
functions such as the incomplete gamma function and the exponential integral [101. 
If  in Eq. (6) we expand the integral by repeated integration by parts, we find 
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J(T)= Z ( R )  Tb+Z[l b + 2  (b + 2 ) ( b  + 3) ] 
-a (E/RT) (E/RT) 2 - . . .  exp (-E/RT) (7) 

Eq. (7) is an asymptotic (semiconvergent) series [11 ]. The series is finite and exact, 
however, when b is a negative integer less than - 2 .  In this case, Eq. (6) becomes 

Z / ~ _ / ' b ' - I  'bl-2 (E/RT)k 
J(T) = - -  ([b[ - 2)! exp(-E/gT) ~ k! - (8) 

a k=0 

When b = - 2, Eq. (7) is a simple exponential function. When b = 0, Eq. 7 corre- 
sponds to the result found by Coats and Redfern. It is noteworthy that in Eqs 
(5a) and (7), n and b are not restricted to the integers but may be allowed to take 
on any real values. 

If  we include only the first two terms in Eq. (7), we may combine it with Eq. 
(5a) to obtain 

1 - - ( 1 -  ~)~-~ ZRTb+~ [ RT(b + 2)] 
- 1 exp (-E/RT) (9) 

1 - n a E  E 

TG data may be analyzed according to Eq. (9) in a number of ways. Of  these, we 
consider two. 

First, we follow Coats and Redfern and write Eq. (9) in the form 

In -~ n)-T -ff~ff (b + 2) R T  = In Z - RT" 
R 1 -  E 

If n and b are given assumed values, the quantities E and Z may be obtained by 
the method of  least squares by iterating on E. 

Secondly, Eq. (9) may be written in the form 

-(~n (b+2)RT lnZ+(b+2) lnT  . (11) 

If n is given an assumed value, then E, Z, and b + 2 may be determined by the 
method of least squares by iterating on E and b. The success of this method will 
depend upon whether In T varies enough so that the value of  the determinant of  
the least-squares matrix is not dominated b y  the random errors in the measure- 
ments of  ~ and T. 

Modification of the Freeman and Carroll method 

The method discussed by Freeman and Carroll  is unique in that it allows for 
the direct determination of  the order of  the reaction. Although this approach 
possesses several difficulties,St is still frequently employed. It has been especially 
successful in solution studies [12]. 
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The Eqs (1) and (2) may now be combined to eliminate k resulting in 

dcc/dt (12) Z T  b exp ( -E /RT)  = (1 - ~)n" 

Differentiating the logarithmic form of Eq. (12) with respect to T gives 

EdT bdT 
d In (da/dt) = ~ + ~ + nd In (1 - ~). (13) 

The values of E, b, and n may be obtained from a least-squares fit of the data 
to Eq. (13). Alternatively, if b is chosen to have a specific value, a plot of 

d In (de/d0 - b(dr/T) E dT 
= n + - -  (14) 

d ln(t -- e) R T 2 d In (1 -- c~) 

will yield a straight line with a slope of E/R and an intercept of n. Several values 
of b should be used to find the best fit of the data. The factor Z may be evaluated 
by the use of Eq. (12). 

Modification of the Achar, Brindley, and Sharp method 

Uniting Eqs (1), (2), and (3), rearranging and taking logs we find 

ad~_ ] = E (15) 
In Tb(1 _ e)ndTJ In Z -  RT" 

It can easily be seen that a plot of In [ade/Tb(1 - e)~dT] as a function of 1/T 
results in a straight line from which the values of E and Z can be determined. 
Values of n and b may be obtained from iterative calculations. Clearly, it is also 
possible to expand Eq. (15) and employ b as a least-squares parameter. 

Least-squares analysis 

The ordinary least-squares methods assume that the random error is present 
in only one axis [13, 14]. However, from relations such as Eqs (11) and (13), 
it is obvious that both ordinate and abscissa may contain error. It is possible 
for these errors to be of similar importance in influencing the values of the least- 
squares parameters. To alleviate this problem, least-squares techniques which 
consider uncertainties in both variables may be used [13-16]. 

When least-squares methods are used in conjunction with equations such as 
Eqs (10), (11), (13), and (15), the nonlinear transformation to In space introduces 
some uncertainty concerning the exact values of the parameters. The residuals 
based upon the initial relation [see Eqs (9) and (12)] will yield kinetic factors 
different from that found using the logarithmic expression. In general, the discrep- 

J. Thermal Anal. 11, 1977 



PETTY et al.: METHODS TO DETERMINE THE TEMPERATURE DEPENDENCE 421 

ancy is relatively small. However,  the range of  the variables may cause this differ- 
ence to become appreciable. A generalized computer  search rout ine can be em- 

ployed to examine  this situation. 

Conclusions 

Several methods of  kinetic analysis f rom T G  and  D T G  studies have been 
put  into forms so that  the temperature  dependence of  the Arrhenius  pre-exponen- 
tial factor may be determined. Methods of  working with these forms were consider- 
ed. At ten t ion  was given to difficulties which arise dur ing the least-squares analysis 
of  data. 

The authors wish to thank V. E. Anderson for some helpful discussions. 
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R~SUMg -- Les m&hodes bien connues de Coats--Redfern, Freeman--Carroll et Achar et al. 
ont 6t6 modifi6es afin de tenir compte du fait que le facteur pr6exponentiel donnant la con- 
stante de vitesse dans l'expression d'Arrhenius est une fonction de la temp6rature. Ces modi- 
fications permettent d'exprimer l'6quation d'Arrhenius sous une forme plus g~n6rale. Plusieurs 
m6thodes num6riques sont propos6es pour exprimer la relation du facteur pr6exponentiel avec 
la temp6rature ~t partir des donn6es TG et des courbes TG d6riv6es. 
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ZUSAMMEI~iFASSUNG - -  Die  b e k a n n t e n  M e t h o d e n  von  C o a t s - - R e d f e r n ,  F r e e m a n - - C a r r o l l  
sowie A c h a r  u n d  Mi ta rbe i te r  w u r d e n  a u f  solche Weise  modifiziert ,  class sie die T e m p e r a t u r -  
abhf ingigkei t  des pr~iexponentiellen F a k t o r s  in der A r r h e n i u s - G l e i c h u n g  ffJr die Geschwin-  
d igke i t skons t an te  en tha l ten .  D u r c h  diese A b ~ n d e r u n g e n  werden  diese M e t h o d e n  in ihre ganz  
a l lgemeine  A r r h e n i u s - F o r m  tiberffihrt.  Vorschlfige betreffs verschiedener  n u m e r i s c h e r  M e t h o -  
den  zur  E r m i t t l u n g  der Tempera tu rabh i ing igke i t  des pr / iexponent ie l len  Fak to r s  aus  t h e r m o -  
g rav ime t r i schen  u n d  der ivier ten t h e r m o g r a v i m e t r i s c h e n  A n g a b e n  werden  gemach t .  

Pe3roMe - -  X o p o m o  rt3aecTnble MeTOaJ, I KOyTCa Pe~qbepna, qbprIMaH--KapoJIsla I~ A-  
m a p a  c COTp., MO,~Hs IILMpOBaHbI C lXeJlbm BK.rlIOtteHM• TCMnepaTypHo~ 3aBIelCHMOCTI, I npe~-  
3i<crloHeHIina:IbHOrO qbaKTopa B ypaBHeHrm AppeHrlyca ~: i s  KOHCTaHTbI CKOpOCTH. ~)TleI H3- 
MeHerln~ cYly~KaT ~aa~ TOrO, qTO6bI Bblpa3laTb 3TH MeTO~bI B HX nari6oflee o6me~I appeHay-  
COBCKO]~ qbopMe. BHcra3anb t  npe~lnono~en~i~,  Kacaromneca  pa3~rlqHblX qnC~OBl, IX MeTO)~OB 
m,i~enenn~ TeMnepaTypno~ 3asrICnMOCrn rlpe~iaKcnoneHnrla:ibHoro daatcropa ri3 ~ianm, ix 
T F  n }ITF.  
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